Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling.

نویسندگان

  • Zamal Ahmed
  • Annika C Schüller
  • Klaus Suhling
  • Carolyn Tregidgo
  • John E Ladbury
چکیده

An understanding of cellular signalling from a systems-based approach has to be robust to assess the effects of point mutations in component proteins. Outcomes of these perturbations should be predictable in terms of downstream response, otherwise a holistic interpretation of biological processes or disease states cannot be obtained. Two single, proximal point mutations (S252W and P253R) in the extracellular region of FGFR2 (fibroblast growth factor receptor 2) prolong growth factor engagement resulting in dramatically different intracellular phenotypes. Following ligand stimulation, the wild-type receptor undergoes rapid endocytosis into lysosomes, whereas (SW)FGFR2 (the S252W FGFR2 point mutation) and (PR)FGFR2 (the P253R FGFR2 point mutation) remain on the cell membrane for an extended period of time, modifying protein recruitment and elevating downstream ERK (extracellular-signal-regulated kinase) phosphorylation. FLIM (fluorescent lifetime imaging microscopy) reveals that direct interaction of FRS2 (FGFR substrate 2) with wild-type receptor occurs primarily at the vesicular membrane, whereas the interaction with the P253R receptor occurs exclusively at the plasma membrane. These observations suggest that the altered FRS2 recruitment by the mutant receptors results in an abnormal cellular signalling mechanism. In the present study these profound intracellular phenotypes resulting from extracellular receptor modification reveal a new level of complexity which will challenge a systems biology interpretation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular point mutations in FGFR2 result in elevated ERK1/2 activation and perturbation of neuronal differentiation.

Two independent gain-of-function point mutations (S252W and P253R) in the extracellular region of the FGFR2 (fibroblast growth factor receptor 2) increase the binding affinity for the growth factor. The effect of this enhanced growth factor binding by these mutants is expected to be an increase in activation of regular signalling pathways from FGFR2 as a result of more receptors being engaged b...

متن کامل

Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis.

It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor-receptor family of signal-transduction molecules-namely, FGFR1, FGFR2, and FGFR3-contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transme...

متن کامل

Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain (Crouzon syndromeyreceptor activationyNeu chimera)

Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson–Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncystein...

متن کامل

Fgf and Tgfbeta Signalling in an In-vitro Model of Craniosynostosis

Fibroblast Growth Factor (FGF) and Transforming Growth Factor beta (TGFbeta) are key regulators of bone development. Constitutively activating mutations of FGF Receptors (FGFR) 1-3 result in craniosynostosis, premature fusion of cranial sutures. The aim of this thesis was to determine how FGF signalling is impaired in osteoblasts with the mutation FGFR2-C278F, known to induce craniosnostosis an...

متن کامل

The role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SSCs)

The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 413 1  شماره 

صفحات  -

تاریخ انتشار 2008